Texas A&M University T4T LAB Spring 2017
Invited Professor: Casey Rehm
Team: Jayson Kim, Emily Majors, Anna Cook.
NOISE AND NEGOTIATING ORDER
This project begins to
establish a compositional hierarchy by negotiating order and disorder through a
relationship produced between an ordered grid system and a disordered array of
noise that releases figural and striated qualities that play out in different
scales.
From elevation, the hierarchy of the grid-based order
translates to the interior. On the exterior, noise is established first, then
the grid, which organizes the density of color, noise, and fragments in a way
that levels and divisions can be read from the elevation. Inside, the poche
“skeleton” creates a fixed system against the deployed fragments that mirrors
this exterior hierarchy because the placement of these fragments are dictated
by the poche.
The design process for this project creates an interfacial
dialogue between machine and human. The machine becomes a departure point for us
as designers in the way that it is able to generate form based on its larger
scope of intelligence. These generative forms are then interpreted with an
architectural knowledge and bias.
In this context, Prometheanism becomes a method of
assembling seemingly insignificant elements in a very precise manner to produce
meaning. For example, this could be
manifested through the simultaneous creation of poche, column, and wall. All
three are indistinguishable from each other because these elements are only
what they are ontologically because of the way that they act. The voxel
geometries that we receive have no inherent meanings attached to them. A column
serves as a column but may fold into the poche, not in a plan typology, but in
a superposition sort of way.
Humans see these fragments and assume the function due to
experiential bias. For example, this fragment (reference plan) could be seen as a column because of our
preconceived notion of what it means to be a column but that may not
necessarily be its function. In some cases, these “column-like” elements
actually take on the role of wall or poche. These roles can switch based on
programmatic requirements.
To further emphasize this, the project operates within a
system of fixed and customizable elements. The fixed open-plan shell lends
itself to be inhabited in an assortment of ways. We use the fluctuating functions
of these deployable fragments to allow inhabitants to occupy the space in a way
that embodies their personal or unique preferences. Hypothetically this could
be achieved in two ways. One would be through artificial intelligence
monitoring of the habits of the occupants. For example, the building might
track one’s time spent in certain spaces, observe one’s circulation patterns,
or determine spatial division based on occupancy count. The other strategy
would revolve more around the inhabitant’s preferences in a real estate sense.
In this model, occupants may purchase more space within the building to expand
their unit.